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Abstract. We propose a method for obtaining the symbolic orbits of interval exchange
transformations of rotation class over n intervals by composing a finite set of basic substitu-
tions, i.e. by doing simple parallel rewriting. Based on surface theory, this method is shown to
be closely related to Rauzy induction. Sturmian objects are known to correspond to interval
exchange transformations over 2 intervals. In this respect, our n intervals case is shown to be
also related to continued fractions and the obtained words have also linear complexity.
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1 Introduction

Substitutions are simple parallel rewriting processes on words which are usual endomorphisms
when applied to finite words. A substitution @ is defined by the image words of each sin-
gle involved letter. For instance, over the alphabet {a,b}, let 8(a) = ab and 6(b) = a,
then O(aba) = 6(a)f(b)6(a) = abaab. Studying iterations of such processes has been ex-
tensively done in formal language theory, mostly under the name of DOL-systems (see for
instance [RS80, RS97]), as well as in symbolic dynamics [GH55, Qué87, LM95].

Interval exchange transformations are simple piecewise isometric maps acting on an in-
terval of the real line, say [0,1), which effect is to permute a finite number of semi-open
subintervals which makes a partition of it. For instance, let a € (0,1), and T'(z) = = +
(1 -a)ifz € [0,a), T(z) =z —a if z € [a,1): this defines an interval exchange trans-
formation over 2 intervals. Such a transformation is fully characterized by the length of
the involved subintervals and the permutation which shuffles them. When iterated, inter-
val exchange transformations lead to generic examples of dynamical systems (see for in-
stance [Kea75, Vee78, Vee82, Mas82, Man83]).

Iterations of an interval exchange transformation can easily be transformed into sym-
bolic information following a traditional operation in dynamical system theory (see for in-
stance [Kea75]): one assigns a different letter to each of the intervals so that the iterates of
the interval exchange transformation, the orbits, are translated into words.

The relationship between substitutions and interval exchange transformations over 2 inter-
vals, hence over alphabets of 2 letters has been already extensively deciphered, mostly under
the name of Sturmian words and Sturmian substitutions (see [MH40, CH73, Ber95, BS97]).

The main result we prove here is about a set of interval exchange transformations over
n intervals. This set consists of the interval exchange of rotation class (see [Vee82, NR97])
which are those which have at most two discontinuities, and for which unique ergodicity is
ensured. Of course these include all the interval exchanges over 2 and 3 intervals, but also
many over n-intervals where n > 4. The theorem we prove here is the following:

Theorem: Consider an irreducible and irrational interval exchange transformation of ro-
tation class over m intervals, n > 2 (respect. n = 2). The set of its symbolic orbits can be
constructively described from compositions of an explicit set of n + 1 substitutions (respect.
2 substitutions) over an alphabet of n letters.

The proof is based on the so-called Rauzy induction (see mainly [Rau79, Vee82, Ker85,
Zor96, NR97]), which is here geometrically interpreted on surfaces with a structure of non-
crossing parallel curves, i.e. singular foliations. It comes out that the considered foliations can
be summed up by interval exchange transformations, defined by first return maps describing
how curves hit some finite transverse segments (see e.g. [Man83] p.119). The shorter the
segments, the longer the pieces of leaves between successive hits of the transverse segments.
In this respect, Rauzy induction can be seen as a mecanism for systematically shrinking a
set of transverse segments, and therefore lengthening the pieces of leaves between hits (see
e.g. [Zor96]). Using the symbolic translation of the orbits of an interval exchange transfor-
mation, the idea of the proof is that this lengthening can be interpreted as the application of
substitutions.

Since Sturmian words are the symbolic translation of the case of interval exchange trans-
formations over 2 intervals, we show next, first, how some of the properties of these words
are recovered from our framework, and second how these properties hold in the general case
over n intervals:



e The complexity of an infinite word w is defined as a map N* — N* which gives for each
m € N* the number of subwords of length m that occur in w (see e.g. [Al194, Lot97]).
This is an usual measure for the structure of infinite words. Sturmian words are known
to have linear complexity m + 1 [MH40, CH73, BS97]. Symbolic orbits of interval
exchange transformations over m intervals can be proved to have linear complexity
(n —1)m + 1, and therefore:

Proposition: All the infinite words generated by the the above theorem have complezity
(n—1)m+ 1.

e Sturmian words are known to be closely related to the classical continued fraction algo-
rithm (see e.g. [Mar82, IY90, Ber95, BS97]). The basic process to generate composition
of substitutions in the theorem, i.e. Rauzy induction, can be seen to be this classical
algorithm in the 2 intervals case, and gives a multidimensional continued fraction al-
gorithm [Rau77, Ker85, Zor96, NR97] in the general case. We discuss the convergence
property of this generalization:

Proposition: For every interval exchange transformation of rotation class over n inter-
vals, n > 2, Rauzy induction leads to a weakly convergent multidimensional continued
fraction algorithm.

We also show how this multidimensional continued fraction algorithm fits into the
general framework of Szekeres [Sze70, Bre81].

e Sturmian substitutions are those which leave stable Sturmian words. They can be
generated by sets of essentially two substitutions. We show how our framework allows
one to recover one of the results about them:

Proposition: Consider an interval exchange transformation over 2 intervals. Then the
two substitutions given by the above theorem are the Sturmian basic ones used in [IY90]
to relate Sturmian words and classical continued fractions.

2 Interval Exchange Transformations

Let A = (A1,...,A,) be an n-dimensional positive vector (n > 2) such that >; A; = 1,
called a length vector, and let 7 be a permutation of {1,---,n}. An interval exchange
transformation (see e.g. [Vee82, Mas82, Man83]) is a function T) . : [0,1) — [0,1) whose
domain is decomposed according to by = 0 and b; = 2221 Aj, for i = 1,...,n, ie. as
LIi=, I; where I; = [b;_1,b;), and whose range is decomposed according to the length vector
(Ar-1(1)s- -+ Ar-1()) With b = 0 and b7 = Y°5_; Aro1(j), ie. as [Jfo, J; where J; = [b_, b7).
The complete expression of T} . is then given as T r(z) = £ —b;—1 +b§(z’)—1 forallz € I;, i =
1,...,7n. One can see that the intervals J;’s are just the intervals I;’s glued together according
to the permutation m, where the interval I; which is in the i-th place, is sent to the 7 (7)-th
place .

An interval exchange transformation is said to be irreducible when its permutation 7 does
not fix (setwise) any strict subset {1,...,k} C {1,...,n}. The simplest non-trivial example of
an irreducible T) . is given by a decomposition of [0, 1) into two intervals (see Figure 2.1(i)):
A= (a,1 —a), where 0 < a < 1, and 7(1) = 2, m(2) = 1. Hence, by =0, by = a, by = 1,
I =[0,a), Iy = [a,1), and T »(z) = z+(1—a) on I, Ty »(z) = £ —a on I. Another interval
exchange over 3 intervals is shown in Figure 2.1(ii) where 7(1) = 3, 7(2) = 2, n(3) = 1, and
A= (1/6,7/12,1/4). An interval exchange transformation is said to be of rotation class iff
it has either one or two discontinuities [NR97]. For instance, over 4 intervals, if 7 is defined
as (1) =4, m(2) = 3, m(3) = 1 7(4) = 2, then T ,(x) has only two discontinuities.
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Let the positive orbit (respect. orbit ) of a point z € [0,1) be O (z) = {T)i\ﬂr(:c), i € N}
(respect. O(z) = {T} (z), i € Z}), and let Z be [0,1) \ U’ O(b;). Then the pair (Z, T )
is a dynamical syste;n, i.e. a pair (X,T) such that X is a metric space and T': X — X is
continuous. Such a system is said to be minimal iff for Y C X, Closure(T(Y)) =Y implies
Y = X or Y = (). The system (Z,T) ) is minimal iff for each z € [0, 1), the orbit Olz) is
dense in [0,1) [Kea75]. Moreover, if T)  is irreducible and irrational, i.e. the only rational
relations between the \;’s are multiples of A\ + ... + A\, = 1, then T)  is minimal [KeaT75].

A topological conjugacy between two dynamical systems (X7,77) and (X2,7%) is a home-
omorphism ¢ : X; — Xy such that ¢T7 = Ts¢, which means that the two systems are
essentially equivalent. It is known that, up to a compactification of Z (see e.g. [Kea75]),
(Z,Tx ) has such a conjugacy towards a language of two-way infinite words over an alphabet
A ={z1,29,...,2,}: Let cod be defined as cod(y) = z; if y € I}, and be extended by setting
cod(O(y)) = ...cod(T}f’ﬂ(y))cod(Tf;l(y)) cee = ...Ty Ty, - the conjugacy is defined by
d(y) = cod(O(y)) towards (A%, o) where the left shift o on A% is defined by o(w) = w' iff
w} = w41 for all i € Z and the topology on A% is the product topology. We call ¢(Z) the
symbolic orbits of the interval exchange T} ;. Note that if minimality holds then in each
word in ¢(Z), every subword of every word in ¢(Z) occurs, and every of its subword occurs
with bounded gaps (see e.g. [Qué87]). So each distinct orbit contains most of the information
about the whole system, and also can be studied locally.

3 Geometric Interpretation of Interval Exchange Transformations

We here recall and develop a geometrical construction from interval exchange transforma-
tions (see e.g.[Arn81, Vee82, Ker85]) which comes from the fact that the dynamical system
based on iterating T)  can be represented as a foliated surface called a suspension (see e.g.
[CLNB85]). A foliated box is a product of two intervals I x I' for which the individual leaves
are the sets of the form I x {z}, with z € I'. Let A = (Ay, ..., Ap) be the length vector of T »
and let R =[0,1] x [0,1) and R; = [0, 1] x [0, ;) be n + 1 foliated boxes. A foliated surface
M\, henceforth called the stripped surface of T) ., is obtained by applying the following
identification rules for each 1 = 1,...,n:

{1} X [0, /\i) with {0} X [1 —b;,1 — bifl),
{O} X [O,Ai) with {1} X [1 — bg(i)’ 1-— bz(i)—l)'

Since individual leaves of the boxes fit together through the identification rules, we get leaves
running on M . For example, the surface M, , in Figure 3.1(i) (respect. (ii)) corresponds
to the exchange transformation given in Figure 2.1(i) (respect. (ii)).
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To recover Ty, from M) ., consider e.g. the transverse arc {0} x [0,1) of R and its
corresponding first-return map: the two-way infinite leaves of M) . are bijectively mapped
to the orbits of (Z,T) ), and therefore also to the symbolic orbits ¢(Z).

Fig. 3.1
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There is a compact surface M), containing M, ,, obtained by taking the complete
rectangles in the above construction, i.e. the rectangles with their four sides. The surface
M) can now be embedded into an orientable surface of genus g (i.e. g-holed) without
boundary: one caps off each boundary component of M) with a punctured disk. The
genus g is given by the Euler-Poincaré characteristic formula: 1 — n + C = 2 — 2g where n
is the number of intervals and C is equal to the number of boundary components of M ..
Figure 3.2 (i) (respect. (ii)) shows a torus of genus 1, in which the irreducible exchange
transformation over 2 intervals (respect. 3) of Figure 3.1(i) (respect. (ii)) has been embedded.

\Q/
Fig. 3.2 f
18 g R R
0) (i)

Punctures of the embedding surface are needed because of the following property:

Remark 3.1 Any two leaves of M) » are homotopic iff they correspond to the same symbolic
orbit.

So in respect to homotopy, moves of the leaves on the embedding surface are possible. Now,
as announced, we concentrate on interval exchange transformations of rotation class:

Remark 3.2 (/[NR97] Cor 3.10). If w is irreducible, then T . is of rotation class iff My , is
embeddable into a torus of genus 1.

We shall consider specific embeddings of irreducible interval exchange transformations of
rotation class over n intervals in the one-holed torus denoted by a pair («,3): 0 < a@ < n is
the number of boxes parallely running once along the meridian of the torus, and 0 < 8 < n is
the number of boxes parallely running once along the meridian and once along the longitude



of the torus; the n — a —  remaining boxes are constrained to parallely run once along the
longitude of the torus. Considering that parallel boxes can be embedded in a global box, this
way of embedding M . corresponds to embed it as the 3 intervals exchange transformation in
Figure 3.2(ii) (see also Figure 3.3(iv)-(vi) and Figure 3.4). Thus for instance, the embeddings
shown in Figure 3.2(i) (respect. (ii)) corresponds to (1,0) (respect. (1,1)). To such an
embedding corresponds a unique permutation 7: « is the largest number 0 < a < n — 1 such
that the permutation 7 restricted to {1,2,...,a} sends i to n — a + %; and S is such that 7
restricted to {a + 1,...,n — B} sends a + ¢ to S+ 4, and restricted to {n — 8+ 1,...,n} sends
n — B+ 1 to 4. The converse does not hold:

Remark 3.3 An interval exchange transformation of rotation class has either a unique em-
bedding of type (.,.) or three different ones with the forms («,0), (0,n — ), (a,n — ).

Corollary 3.4 Among all the embeddings (a, 8) for a given permutation ® as above, there is
only one for which « >0 =7"1(n) and 8 >0=n—7 (1) + 1.

There exists a planar representation of these embeddings. Every surface of genus g can
be seen as a polygon whose sides are pairwise identified. Instead of identifying sides of the
same polygon, it is also possible to consider infinitely many copies of the polygon with its
sides marked, and to glue these copies along their sides so to obtain a tiling of some simply
connected infinite surface. This surface together with its tiling is in some sense unique, and
is called the universal covering (see e.g. [Mas67]). For the torus of genus 1, the polygon is
a square with opposite sides identified, called a flat torus, and the universal covering is the
usual plane R?. This is shown in Figure 3.3(i)-(iii) where a torus is shown in (i) together with
two curves z and y. When cutting along them, one obtains the flat torus shown in (ii) for
which z and y are the side pairs, and some of the tiling of the universal covering is shown
in (iii). Figure 3.3(iv)-(vi) shows the same but with the embedded stripped surface My , of
Figure 3.2(ii).

y Xy)( Xy)( Xy)( Xy)(
Ty y y y
XyX Xy)( Xy)( Xy)(
—= |X X y y y y
Xy;(xyxxyxxyx
i y y y y
XyX XyX XyX Xy)(
y y y y y
. 0] (if) (i)
Fig. 3.3
[
1
3 i | = eis ]
— -~ [R| R ol
R, R R, /,x’/ %
B A / ® B 7 "
_ w BN
(iv) v) (vi)

In respect to this representation, Figure 3.4 (i) shows a more general case of an embedding
(a, 8), i.e. (2,3), of an interval exchange transformation over 9 intervals. Figure 3.4 (ii)
zooms in the central box R indicating the number of respective boxes according to «a, 8 and
n.
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4 Rauzy Induction

Consider a stripped surface M) , embedded into a punctured torus of genus 1. According to
Remark 3.1, leaves can be moved continuously on this torus without changing their codings.
More generally full foliated boxes of M)  can be continuously moved on the torus without
changing their widths \;. Let R, 7) be the completed boxes, i.e. the building boxes for M—M
A glueing move is a continuous move of a box R; of M, ., followed by an identification of
R;’s upper side (resp. lower side) with the union of R’s lower side (resp. upper side) and
one of the boxes’ lower sides (resp. upper sides) adjacent to it. Of course a glueing move is
not possible for all ¢, and the following lemma lists all the possibilities for the embeddings
of type (a,8) (to better understand its meaning, the reader could first have a look at the
examples pictured in Figure 4.1 and Figure 4.2). When a glueing move is possible it yields
an embedding of another stripped surface My + for some X' and ='.

Lemma 4.1 LetT) ; be irreducible and of rotation class over n intervals, n > 2. Four different
kinds of glueing moves are always possible. Their effects on A and on the e@beddings (a, B),
and therefore on m, are described as follows, where we denote n — 3+ 1 by B:

o If3>0andn—a— B >0, a move under R, is to glue the box Rqoy1 under Ry. The
effect is:

— (M, ---5An) is sent to (A1,..., Ap + Aar1)-
— (a,B) is sent to (@ +1,5).

o Ifa>0andn—a—p >0, a move under R, is to glue the box Ro+1 under Ry. The
effect is:

— (M, Aas Aatly - - -5 An) @8 sent to (A1, .., Aa + Aat1s Aat2y -+ Any Aatl),
— (, B) is sent to (o, B+ 1).

o Ifa>0andn—a— LB >0, a move over Ry is to glue the boz Rﬁ—l over Ry. The
effect is:

— (M,---5An) is sent to (A + )\5_1,)\2,...,)\”).
— (, B) is sent to (o, B+ 1).

e If 3>0andn—a—p >0, a move over RE’ is to glue the box RE—1 over Rﬁ' The
effect is:

— (>‘1’"">‘B—1’)‘E"" ,)\n) 1s sent to (AE—I’AI"" ,)\E—i-)\g_l,)\g_i_l,...,)\n).
— (a,B) is sent to (a+1,).



Proof. These effects can be checked directly on the embeddings. To see that all these moves
are always possible, note first that if n — @ — 8 = 0, then the permutation («, ) can be
reembedded as (0, 3) or as («,0). Second if n —a — 8 > 0 and S = 0 then the permutation
embedded as (a,0) can be reembedded as (0,7 — a) (a # 0 since T) , is irreducible), and
therefore, moves under R,, and over R4 become possible. Otherwise, if @ = 0 then the per-
mutation embedded as (0, 3) can be reembedded as (n —3,0) (8 # 0 since T} , is irreducible)
and therefore moves under R, and over R; become possible. To see that these moves are
the only ones for the embeddings of type (a, 3), take in consideration that punctures cannot
vanish by the application of a move. {

Corollary 4.2 The set of irreducible interval exchange transformations of rotation class over
n intervals, n > 2 fized, is setwise invariant under the above four mowves.

Proof. According to the definition of « and 3, the only reducible permutation is denoted by
(o, B) is (0,0). Neither moves nor reembeddings as described above can lead to (0,0). ¢

Let us show some examples using the universal covering representations (cf. Figure 3.3).
Glueings can be observed by focusing only on four adjacent copies in a square. Consider an
interval exchange transformation T} , over 4 intervals, and let 7(1) = 3, 7(2) = 4, 7(3) = 2,
7(4) = 1 embedded as (2, 1). Then a glueing move under R,, is shown in Figure 4.1: one glues
R3 under R4. The new stripped surface My v is such that 7'(1) = 2, #'(2) = 3, 7'(3) =4,
7'(4) = 1 embedded as (3,1), and X = (A1, A2, A3, A1 + A3).

(7
@

-~ | R

2.

(i) - (ii)

Another example is given in Figure 4.2 for which n(1) =3, 7(2) =4, n(3) =1, n(4) = 2
embedded as (2,0), where a glueing move under R, with o = 7~!(n) is applied: one glues
R3 under Ry. The new stripped surface My is such that 7'(1) = 3, #'(2) = 4, 7'(3) = 2,
7'(4) = 1 embedded as (2,1),and X' = (A1, Ao + A3, Ag, A3).
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Inverting the application of each above glueing move, we get cutting moves: beginning
with 7)) () and trying to find a T(+1) i+ such that the former is obtained from the
latter by one of the glueing moves. According to Lemma 4.1, this is equivalent to solve the

following equation systems:

- If the move is under R,;:

. -
)\gj) _ )\g.H' )’

el

1
AP

NG (1)
G, G4
A AL 4

- If the move is under R, (here, accordingly to Lemma 4.1, o{9) = o{/+1) is denoted by «):

a+1

-If the move is over Rq :

O
O

g -

j+1
:)\g‘H—)

7

_ )\(j‘f'l)

G, G+
_ )\(]‘H)

a+2

=y,
j+1
:)\gj—l)'

j+1 j+1
)\g] '+ ’\(—](j+1))_1’

G,

A,



- If the move is over RF: (here, accordingly to Lemma 4.1, B(j) = BUH) denoted by B):

(@) _ U+
Aé') _A?'_ll)’
+

AQ] — Alj ,

G)  _ 4G+
AB_I = AB,_Q 9 ' (4)
AU 20D 3G

B 3 A1
A G

p+1 B+1 7

NN

The pair of cutting moves given by Eq. Sys. 1 and 2 (respect. Eq. Sys. 3 and 4)
denoted by S; (respect. S3) are two ways of defining Rauzy induction ([Rau79] p.322) (see
also [Vee82, Zor96]). The difference between the Si-system and Sp-system is that cutting
moves of S; are always applied from the last interval, and those for S, are always applied
from the first interval. The word “induction” is justified since application of cutting moves
can be iterated. The separation into two distinct pairs of the above four glueing/cutting
moves is justified by the following result:

Remark 4.3 Let T ; be irreducible, irrational and of rotation class. Rauzy induction can be
deterministically iterated to infinity using either S1 or Sa.

U _
al) =

so that its only additive equation becomes )\%j ) = /\53' +) + AV Eq. Sys. 2,

ali)"

Proof. Let us check it for the Si-system. According to Lemma 4.1, in Eq. Sys. 1, A
(+1)
a'(j+1)—|—1" . . .

)\7(17 ) = )\(ij_'ll), so that its only additive equation becomes )\S()j) = ASJ)I) + A%J ). Since length

vectors are in R, the choice between the two moves depends on the sign of /\g(j) — /\,(f ).

@) O

n

Indeed, since T)  is irrational, Aa(j)

# 0 for every j. Otherwise this equality would

mean that there is a second relation of rational dependance among /\gj ), e ,)\53 ), the first

one coming from the normalization relation Y ;- )\EO) = 1 at step 0 which propagates to
n 1)) )
1=

A7 =1 at step j, wh_ere kz(]
this relation and the relation )\((j()j) — )\gf ) = 0. Hence the irrationality rank of A, hence of A,
could not be more than n — 2, which is a contradiction. The same kind of reasoning applies

to the Ss-system about the sign of )\(Ej()j) _ )\gj)_ o

> 0 for all 7,j thus implying independance between

So iterating Rauzy induction leads here to a decomposition algorithm of an irreducible
interval exchange transformation T} ; of rotation class. The expansion of this iterating
process is defined by recording the sequence of cutting moves which are applied. In the ;-
system (respect. So-system), putting 0 for Eq. Sys. 1 (respect. Eq. Sys. 3) and 1 for Eq.
Sys. 2 (respect. Eq. Sys. 4), it is defined as:
0 if A\ > )\(aj), (respect. )\gj) > )\(—j)),
e IO NG G _ \0) (5)
1 if Ay’ < Ag’,  (respect. A}’ < )\E )

We now give a full description of the algorithm in the S;-system case (it is similar for
the Sy-system case). Recall first that cutting moves implies substractions by 1 on (a, )
accordingly to Lemma 4.1, and that («,0), (0,n — @) and (a,n — «) are embeddings of
the same permutation (cf. Remark 3.3). So whenever at some step « = 0 or § = 0, we
systematically reembed the interval exchange transformation using the embedding with no
zero values (cf. Corollary 3.4).
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Algorithm 4.4 Input: T) , irreducible, irrational and of rotation class, with n > 1 and em-
bedded as (a,3), where o # 0 and B # 0; Output: {e;},—1,...

1. 50,
MO0
(0, 89) « (, B).
2. switch of
« > AE&%

(a) solve Eq. Sys. 1to get AUt

(b) if o) #£1

then (aUtD), gUFD) « (o) — 1, 80)),
else (a J+1)’ﬂa+1)) — (n ﬁJ ),BU)). /* reembedding */
(C) €541 < 0.
o AP <AV

solve Eq. Sys. 2 to get AUt1),
b) if gU) #£1

then (oD, gUHD)) « (al9), gl0) — 1),

else (« (G+1), BJ+1)) (), n — al?)). /x reembedding */
(c) €1+ L.

N L~
o
o

3. j+Jj+1L

4. goto (2).
A full example of the application of this algorithm is given at the end of the next section.

5 The Substitutions

Given an alphabet A, a substitution 6 over A (see e.g. [Qué87]) is a map which sends every
letter z of A to some word over A, and which is extended to any word w = ... w;w;41... over
A, finite or not, by sending it to ...0(w;)@(w;y1).... Recall that the leaves of the stripped
surface M , which correspond to the orbits of the interval exchange transformation T .
can be represented into words over {z1,z2,...,Z,} by marking the boxes as the orbits of
T\ visit them. This corresponds to the topological conjugacy ¢ introduced in Section 2,
which maps each point of Z C [0,1) to its symbolic orbit. In the previous section, we saw
how a glueing move yields an embedding of another stripped surface My » for some A" and
w!. Strictly speaking, just a homotopy has been applied on the leaves, and therefore their
original meaning has not been changed. One can however record the change by coding their
associated symbolic orbits relatively to the new interval exchange transformation, i.e. T ;.
The next result shows indeed that going from the original symbolic orbits to the new one is
obtained by applying a substitution:

Proposition 5.1 Let T be irreducible and of rotation class over n intervals. Let t be one
of the glueing move of Lemma 4.1. Then there erists a unique substitution 6; such that

pot=0;00¢.

11



Proof.

- For a move under R,,: only the leaves coming from R,+1 are modified and stretched: they
have to run once through R, before going ahead. So 0(z4+1) = Zat1Zn, while the other
letters remain unchanged.

- For a move under R,: only the leaves going into R,y1 are stretched: they have to run
once through R, and then under R, before going their way ahead. So 8(z4+1) = Za%n. The
letters whose indices start from « + 2 to n are permuted accordingly.

- For a move over R : only the leaves coming from Rﬁ—l are modified and stretched: they
have to run once through R; before going ahead. So 0(:%_1) = Tg_,T1, while the other
letters remain unchanged.

- For a move over R3: only the leaves going into R5_, are stretched: they have to run once
over RF and then through R, before going their way ahead. So 9(335_1) = T5T1. The letters

whose indices start from 1 to § — 2 are permuted accordingly. ¢

The substitutions for the Sj-system, i.e. for the pair (under R,, under R,), are therefore
given as follows, where the third index is the € value of the corresponding equation system:

0n,a,0 I = T Gn,a,l I = T
T — T Lo — T
Tat1 > Ta+1Tn Ta+l > Taln
Ta+2 7 Ta+2 To+2 7 Ta+l
In — In In — Inp—-1

Taking into account irreducibility, and restrictions given by Lemma 4.1, this gives a set of
2(n — 1) substitutions: 6, 0 with a € {0,..,n — 2} since for a move under R,, then 8 > 0
and n —a — 8 > 0, so o cannot be greater than n — 2; and 6, 4,1, where @ € {1,..,n — 1}
since for a move under R, then o >0 and n —a — 8 > 0.

The substitutions for the S-system, i.e. for the pair (over Ri, over Ry) are (recall that

B=n—-pF+1):

0;,&0 I — T 92,5,1 A — T2
:EE_Q — ]23_2 II,‘B_Q — .’L‘B_l
‘Tﬁfl — .’Eﬁil.’El :3371 = .133331
Ty, = Iy Ty = Ty,

This also gives a set of 2(n — 1) substitutions: 6;, 5, with 8 € {0,..,n — 2} and 6, 5, with
B €{l,..,n —1}. In case n > 2, these two sets can be simplified into smaller sets of (n + 1)
substitutions. Here is the result for the S;-system:

Proposition 5.2 Let n > 2. Let p be the substitution xo — z1x2 (the other letters remain
unchanged), and 7; be the substitutions induced by the n—1 transpositions (1 1), fori =2,...n,
i.e. z; — x1 and x1 — x; (the other letters remain unchanged). Then the substitutions 6, 4 ;,
J = 0,1, can be obtained by a finite composition of p, 7; and 0,00.

Proof.  For the facility of the presentation we set 71 = the identity. A straightforward
calculation shows then that for 0 < o < n — 2 one has 6, 40 = Ta+1 © 60,0 © Ta+1- Now
note that the 7;’s generate the set of all the possible letters permutations induced by a

12



permutation of {1,...,n}. For @« = 1,2,...,n — 1, denote by 7, the substitutions induced
by the transposition (2« + 1) and by 7, the one induced by the circular permutation
(nn—1--- a+1). For 1 < a<n-—1wecompute 7,07, 0poT, 07, this is the substitution
which sends z,41 to Z4Za+1 (equals p when @ = 1). We compose next with r, on the left
and obtain 0, o 1. ¢

Theorem 5.3 Let T ; be irreducible, irrational and of rotation class over n intervals, n > 2
(respect. n = 2). Every subword of its symbolic orbits can be obtained to any prescribed length
by applying a composition of n + 1 substitutions (respect. 2 substitutions) over {x1,...,Tn}-
Proof.  We can use either the Si-system or the Ss-system of Rauzy induction. Let us
consider the former and consider the expansion obtained by the decomposition algorithm
applied to T} . To each truncation at step N, for some N > 0, we get a finite composition
of cutting moves. By reversing it, we get a composition of glueing moves which, according to
Proposition 5.1, can be translated into a composition of N substitutions 6;, o .... 0 8;,. We
therefore obtain a sequence of compositions {6;, o .... 0 0;, } nen. Concentrating on its effect
to z1, this leads to a sequence of words W = {6;, o .... 0 0;, (z1) } yen which all are pieces of
symbolic orbits of Ty . For each substitution in the set corresponding to S, #(z1) begins
with z1. Hence, for every N > 0, 0;, o ....0 0;, (z1) = 0;; o .... 0 0;,_,(z1)v for some v over
{z1,...,zn}, which means that prefixes are preserved. So indexing the words of W starting
from their left ends, there exists a limit word w) ; of W, which by construction, represents
a positive orbit of T ;. The same applies with the S>-system, but with the substitutions 9;-
and by applying the compositions to .

Now, since T - is irreducible and irrational, it is minimal (see Section 2). Hence, using the
topological conjugacy between (Z,T) ) and (¢(Z), o), the word w) , contains every possible
subword occuring in all the symbolic orbits of T . It is known that minimality means that
each subword occurs in w) . with bounded gaps (see e.g. [Qué8T7]). Therefore, there exists a
finite & > 0 such that every subword with a prescribed length belongs to 6;, o .... 0 6;, (1)
(respect. 67, o....0 6 (z) in the So-system) for all N > k.

Let us consider a full example. Consider an interval exchange T} , where A = (1,3 v/2, (3v/2)?)
and 7(1) = 3, m(2) = 1 7(3) = 2 embedded as (1,2). By applying the decomposition algo-
rithm of the Si-system of Rauzy induction, one may check that the vector decomposition of
the vector goes as follows for the ten first iterations (there, lambda indicates the state of the
length vector A and pi indicates the new state of the permutation with its embedding):

lambda: (1 1.259921 1.5874011) pi: (1,2) => Eq. Sys. 1
lambda: (1 1.259921 0.5874011) pi: (1,1 => Eq. Sys. 2
lambda: (0.4125989 0.5874011 1.259921) pi: (2,1) => Eq. Sys. 1
lambda: (0.4125989 0.5874011 0.8473221) pi: (1,1) => Eq. Sys. 1
lambda: (0.4125989 0.5874011 0.259921) pi: (1,2) => Eq. Sys. 2
lambda: (0.1526779 0.259921 0.5874011) pi: (1,2) => Eq. Sys. 1
lambda: (0.1526779 0.259921 0.4347232) pi: (1,2) => Eq. Sys. 1
lambda: (0.1526779 0.259921 0.2820453) pi: (1,2) => Eq. Sys. 1
lambda: (0.1526779 0.259921 0.12936734) pi: (1,1) => Eq. Sys. 2
lambda: (0.0233105 0.1293674 0.259921) pi: (2,1) => Eq. Sys. 1

This yields the ten first elements of the expansion:
{6i} = {Oa 1,0,0,1,0,0,0,1,0, }

In the case of three intervals and in the S;-system, we have the following four substitutions:

03,00 : 0310 : 03,11 : 0321 :

1 = I1I3 Al = X1 1 = X 1 = I
To = I T = Z9Z3 T = Z1ZT3 T = I
T3 = I3 T3 = I3 T3 = I9 T3 =  ToI3
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According to Proposition 5.2, the simplification of the above set of substitutions is the
following (in the case n = 3, there are also four substitutions):

03,00 : p: T : T3 :

bl = T1I3 1 = I 1 [ I 1)) 1 = I3
o [ I 1)) T2 = T1X9 o = I o [ I 1))
T3 = I3 T3 +— I3 T3 = I3 T3 = I

Next, by applying the construction used in Theorem 5.3, one may construct the composition
© of the corresponding 10 substitutions 8, 4 ;, starting from the bottom. For instance, the
last line in the above partial expansion indicates that Eq. Sys. 1 is applied with an embedding
(2,1), which means a move under R,, with a = 0, since (2,1) = (0,1) (see Remark 3.3), and
therefore the application of the substitution 63 o. The above line indicates that Eq. Sys. 2 is
applied with an embedding (1,1), which means a move under R, with @ = 1, and therefore
the application of the substitution 631 ;. So the whole composition © is:

© =03000031,10030008031006031,100300083000030008031,1080300.

And,

@(:111) = T1X3T2T1X3L3LQL1LILILQL1LILILQLILILL2LY.

This word is a subword of the symbolic orbits of T} ;.

6 The Sturmian Properties

Sturmian words [MH40] (see the surveys [Ber95, BS97]) are words over two letters with many
characterizations and properties. They are known to correspond to symbolic orbits of interval
exchange transformations over 2 intervals. The above Theorem 5.3 allows one to get symbolic
orbits of interval exchange transformations over n intervals, and therefore symbolic orbits
over n letters. In this section, we check in what respect these have or lead to several of the
same properties as the Sturmian ones.

6.1 Linear Complexity

The complexity function P(w,m) of an infinite word w is defined as the map from N* to
N* associating to each m > 0 the number of distinct subwords of length m that occur in
w. Sturmian words are characterized by a complexity function m + 1 [MH40, CH73]. The
following proposition is acknowledged in word combinatorics (see e.g. [Kea75]), however we
could find no written proof in the litterature, so we provide one hereafter:

Proposition 6.1 Let T ; be irreducible and irrational over n intervals, n > 2. The complexity
function is P(w,m) = (n — 1)m + 1 where w is any of its symbolic orbits.

Proof. The symbolic orbits are words over n letters A = {1, z2,...,z,} and recall that cod
is defined as cod(z) = z; if x € I;, where I; = [bj_1,b;) is the jth subinterval involved in
Ty . Let Wy, be the set of the words of length m which appear in the symbolic orbits of T'.
Let w € W,, for some m and let I, = {z € [0,1) | cod(z)...cod(T™ *(z)) = w}. This is an
interval and clearly, {I }wew,, gives a partition of [0,1).

For m = 1, subwords are the n letters. Assume the property is true for m > 1. Consider
the (n —1)m + 1 subwords and the associated intervals {I, },ew,, partitioning [0,1). Denote
by ai,...,a(,_1)m4o their extremities. Because of the irreducibility and irrationality of T,
the orbits of B = {bo,...b, } are infinite and distinct [Kea75]. Moreover, the a;’s come from
iterates of B by T'. Hence, each b;, with j € {1, ..., (n — 1)} belongs to the interior of T"(I,,)
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for some w € W,,. There are K intervals with 1 < K < (n—1) in {T™ (1) }wew,, which cover
B. Each of these, covering h points of B, corresponds to h + 1 distinct ways of continuing
the orbit pieces of length m. Hence, we have a total of (n — 1)m +1— K + ((n — 1) + K)
continuations, all longer by one more letter than the previous orbit pieces.

¢

Corollary 6.2 Every symbolic positive orbit obtained by composing the substitutions in Propo-
sition 5.1 according to Theorem 5.3 has linear complezity.

6.2 Continued Fractions

Sturmian words are known for a long time to have a very close relationship with the clas-
sical continued fraction algorithm [Mar82]. We can check this within our framework (see
also [Ker85, Zor96]), considering e.g. the Si-system of Rauzy:

Remark 6.3 Let T) . be an interval exchange transformation over 2 intervals, with = = (1 2),
and A = ()\50),/\9)). The ezpansion {¢;} is (1,...,1,0,...,0,1,...,1,0,...) iff the ezpansion
S—— N~ N——

ag a1 as
given by the classical continued fraction algorithm of A1 /Xe is [ag, a1,a9,,...]-

Proof. Eq. Sys. 1 and 2 are respectively:

A =g AP = AP 45y
)\gj) _ )\g]‘f'l) +>\§J)’ )\gj) _ A§J+1)

The classical continued fraction algorithm is based on the Euclid algorithm where the ex-

pansion corresponds to the multiples of the Euclid’s divisions. Assuming that )\g") > AS’),

/\go) = ao)\go) + rg, where ag > 0, this amounts to apply ag times Eq. Sys. 2, hence to
obtain A = ry and A = A with Al®) < A{") So, the second step is given by
,\g‘“’) = al,\§“°) + 71, which is equivalent to apply a; times Eq. Sys. 1, hence to obtain
)\%aﬁal) = ,\5") and A§“°+‘“) = r1. Then, carry on the process. <

Over n > 2 intervals, Rauzy induction implies a multidimensional continued fraction
algorithm [Rau77, Ker85, Zor96]. However, properties of this algorithm are not directly
checked in the above references. Let us first look at convergence: to each truncation at step
N of an expansion, one can reverse the process like in Theorem 5.3 by starting, say from the
length vector ¢y = (1,0, ...0) and thus get a length vector cy. This defines a sequence {c;} of
vectors. We say that such a sequence of approximations is simply convergent if ¢, — A when
(k — o0). It is weakly convergent in the sense of the multidimensional continued fraction
literature (see e.g. [Bre81]) iff the sequences {c;} simply converge for any starting vector
cp. Convergence of the multidimensional continued fraction in the case of interval exchange
transformations of rotation class is a direct consequence of their strong ergodicity:

Proposition 6.4 Let T ; be irreducible, irrational and of rotation class over n > 2 intervals.
Then the sequence of approzimations {cx} obtained by the decomposition algorithm weakly
converges to .

Proof.  Interval exchange transformation over two and three intervals are known to be
uniquely ergodic (see e.g. [Kea75]). So the same strong property holds for the interval ex-
change transformation with 1 or 2 discontinuities. This means that for any leaf of M , and
any center point on this leaf, the average number of times the leaf visits each box R; in the
stripped surface M, ; around the chosen center has limit A;. Consider the expansion of the
decomposition of T} ,, and to each truncation step N, N > 0, reverse the process and call
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hn the map on the leaves of M, , corresponding to the composition of the NV glueing moves.
Accordingly, cy is the length vector arising at the step N, and T, r, the interval exchange
transformation. Let £ be a leaf in M) , and let £y in M, r, be such that hy(fy) = £.
Put Iy; = £x N R;. The number of boxes R; visited by hy(In,) increases with N, for if not
this contradicts minimality. By ergodicity, the number of times hn(Iy;) visits R, for any
J € {1,2,...,n}, divided by the total number of visited boxes converges to \; as N goes to
infinity. Since unique ergodicity holds this does not depend on the component chosen for Iy ;
in R;, nor on 4.

Revisiting the full example given at the end of the precedent section, we can check the con-
vergence by comparing the frequencies of the letters of the subwords obtained by Theorem 5.3
with the length vector of Ty ;. Normalizing A = (1,22, (3v/2)?), one gets (0.25992105...,
0.32747998..., 0.41259896...), and for the word ©(z;) given in the example, the normalized
frequencies of the three letters are (0.26315789..., 0.31578947..., 0.42105263...). Accordingly,
one has just to go further in the expansion to get longer compositions of substitutions, there-
fore longer words and better approximations of the initial vector. For instance, with the same
example and with an expansion prefix length of 50, one gets a word of length 66878 and
frequencies (0.25992105..., 0.32747689..., 0.41260205...).

This convergent multidimensional continued fraction can be embedded in the general
framework for extending continued fractions due to T.-Sés and Szekeres [Sze70]. One direct
consequence is that one can readily extract forward recurrence equations. We quickly show
here how the S;-system of Rauzy induction can be translated into the main formal equations
of [Sze70](p.119): the selected suffiz p(j) is the al¥) > 0, ie. (x())~(n). Considering the
expansion {¢;} (see Eq. 5), we transform Eq. Sys. 1 and Eq. Sys. 2 into (/) is denoted
by «):

M= (1= 26O = AF),
AT = €j+1/\$i7) +(1 - €j+1)>\gj), (6)
)\,(CJH) = )\,(C]) for k # n, a.

After having solved system (6) above we apply the permutation (¢ « +1 a+2 --- n) to
AU+1D%g coordinates if €j+1 = 1; and no permutation if €¢;;1 = 0. Hence, Eq. Sys. 6 is Eq.
sys. 1 when €11 = 0 and Eq. Sys. 2 (after application of the permutation) when €;; = 1.

6.3 Sturmian Substitutions

The substitutions are the following in the S;-system:

21,0 : 02,11 :
7 = I1Z2 T = I
o [ A 1)) i) = X1X9
And in the Sy-system:

! . / .
0500 021,
T = T T = Z2X1
9 = I9Iq T9 [ A 1))

These are two sets of basic Sturmian substitutions (see the survey [BS97]). The ones of
the Si-system are exactly the same ones as used in [IY90] which are directly related to a
theorem of Markov and Venkov [Mar82, Ven70] to describe the sequences over the alphabet
{0,1} given as ([.] denotes the bottom function):

c(@,y) = {lnz +yl = [(n = Dz + yltn=123..-
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These sequences are called lower mechanical sequences and these are Sturmian words (see
e.g [BS97]). In particular, they run all the finite Sturmian subwords as z runs [0,1). Our
framework provides another proof of the main result contained in [TY90](Th. 2.2)2:

Proposition 6.5 Let A = (A1, A2) and let [ag,a1,a9,,...] be the expansion of the traditional
continued fraction algorithm of A\1/Xe. Let

_ Ao a1 a as
0= 92,1,0 ° 92,1,1 ° 92,1,0 ° 02,1,1 o..(z1)

Then the fized point of © is equal to 7(c(1 — ()\1’:_72)‘2),0)) where 7(0) = z1 and 7(1) = z3.

Proof. First note that c¢(z,0) is equal to the orbit starting from 0 of the interval exchange
transformation T} ;1) where A = (1 —z,z). Hence (c(ﬁ, 0)) is equal to the orbit starting
from 0 of the exchange interval transformation T) (1) where A = (A1, A2). Use Remark 6.3
to conclude. <

7 Conclusion

We proposed an effective way of producing the symbolic orbits of any interval exchange
transformation of rotation class by using a decomposition algorithm based on Rauzy induc-
tion. This algorithm relies on building compositions of substitutions taken among a finite set
of generators, following an approximation scheme which happens to be a multidimensional
continued fraction. We presented two different systems, i.e. S and S5, depending on the
side (left or right) where the induction process takes place. This yields two different sets
of substitutions. We do not know at this time whether these are the only possible systems,
i.e. the only possible sets of substitutions which generate the searched for symbolic orbits.
Also, we do not know if the minimum number of generators for them is n + 1 as given by
Proposition 5.2 in case n > 2. Another direction of further investigation is the study of mul-
tidimensional continued fractions [Sze70, Bre81]. This could lead to a characterization of the
periodic expansions, and therefore a characterization of the orbits which can be generated by
iterating a single substitution (as it has been done for the 2 intervals case [CMPS93, Ber95]).
To this respect, note that the set of possible compositions of substitutions that one can obtain
by Rauzy induction can be described by a sofic system (see e.g. [NR97],p.1189). Finally, let
us note that Sturmian substitutions can be also related to Dehn twists, i.e. surface home-
omorphisms [LN95]. This has been used in a more generalized setting in [LN98] where a
conjugacy from Dehn twists towards substitutions has been used. In fact, glueings moves and
reembeddings can be related to Dehn twists applications, actually to non-integral ones (as in
e.g.[Ker83]).
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2To precisely compare our result with the one in [IY90], let us consider only expansions of type
z = [0,a1,as,...]. The differences with Proposition 6.5 are that, first the indices of the involved
substitutions are inverted, and second, the first term of the composition have power a; — 1 instead
of a; (see Theorem 1.1). This can be explained as follows: inverting the indices of the composition
of the substitutions generates ¢(1 — z,0) instead of ¢(z,0) because this amounts to invert the 0’s and
the 1’s (except the first 0) in the limit word. Since ¢(x,0) is equal to the orbit starting from 0 of the
interval exchange transformation T} (;,1) where A = (1 — z, ), the inversion leads to the same as the
orbit, starting from 0 of T/ (1,0) where ' = (2,1 — ). Now, one can check that if z = [0,a1, a2, ...]
then (lf—z) =[0,a1 — 1, as,...]. Summing up, the interval exchange transformation described in [TY90]

is the one with A = (1 — z, z), while ours is given by A = (z,1).
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